사용자 삽입 이미지염색체 말단을 보호함으로써 악성 세포의 파괴를 막는 텔로머레이즈(telomerase)를 저해하면 일단은 암세포를 사멸시킬 수 있지만 이후에 암세포의 저항성을 유발하는 것으로 나타났다. ‘Cell’ 최신호에 발표된 이번 연구는 여러 암에서 과다 발현되는 텔로머레이즈를 항암제의 표적으로 삼기 위해서는 이들이 어떤 일을 어떻게 수행하는지를 이해할 필요가 있음을 제시하고 있다.
연구를 주도한 텍사스 MD 앤더슨 암센터의 Ronald DePinho 박사는 “우리는 마우스 모델을 이용하여 암의 발달, 진행, 치료에서 텔로미어의 위기(crisis), 재활성화, 소멸을 보다 자세히 연구하였다. 이 훌륭한 모델은 암세포들이 텔로머레이즈 결손을 해결하기 위하여 수용하는 2가지 기작을 드러내고 있다. 이들 결과들은 텔로머레이즈 저해에 대한 암세포의 반응과 저항성 기작을 보여주고 있으며, 동시에 텔로머레이즈를 표적으로 삼는 조합 약물의 필요성을 제시하고 있다.”라고 설명했다.

텔로미어(telomere)는 선형인 염색체의 말단을 덮고 있는 반복 염기서열 분절로서 염색체 안정성 유지에 핵심적인 역할을 한다. 사람의 세포 대부분은 세포가 분열할 때마다 텔로미어가 조금씩 짧아지게 되고, 이러한 경과가 장기간 진행되어 텔로미어가 사라지면 유전적 불안전성이 유도되어서 세포는 사멸되게 된다. 이러한 과정을 텔로미어의 위기라고 부른다. 그러나 암세포의 경우에는 텔로미어를 연장시키는 텔로머레이즈가 활성화되었기 때문에 분열을 지속해도 텔로미어가 짧아지지 않고 계속 무한 증식할 수 있다고 한다. 이처럼 텔로머레이즈 활성화가 대부분의 암에서 핵심적인 것으로 알려져 있다.

이번에 연구팀은 림프종 마우스 모델에서 유전적 불안정이 발생한 후의 텔로머레이즈의 재활성화가 암의 진행을 유발시키는 것을 확인했다. 또한 암세포에서 텔로머레이즈를 저해하면 세포 사멸이 유발되었지만, 결국 텔로머레이즈에 독립적인 텔로미어의 대체 연장(alternative lengthening of telomeres: ALT)가 유발되었다고 한다. ALT 양성 세포들은 PGC-1ß라는 미토콘트리아의 기능 조절에 핵심적인 유전자의 발현이나 복제수가 증가하였다고 한다. 더하여 미토콘드리아의 기능을 약화시키기 위하여 PGC-1ß를 표적으로 삼으면 항텔로머레이즈 치료의 효과가 높아지는 것으로 나타났다.

연구팀은 재활성화된 텔로머레이즈의 영향을 조사하기 위하여 마우스를 유전자 변형시켜 4-hydroxytamoxifen (4-OHT)로 처리하면 텔로머레이즈가 재활성화되는 T 세포 림프종을 유발시켰다. 이들 마우스를 여러 세대 교배시켰으며 일부는 4-OHT를 나머지 일부는 텔로머레이즈를 활성화시키지 않은 위약을 투여하였다. 여기서 3세대 및 4세대 마우스들은 4-OHT에 의해서 텔로머레이즈가 활성화되었으며 비장, 신장, 간, 폐, 골수 뇌 등에서 암의 침습이 많이 발생하였고 평균 생존기간은 30일이었다고 한다. 이와 달리 위약이 투여된 대조군은 70%가 평균 50일간 생존하였다고 한다. 대조군의 암세포들에서도 암 억제 p53 신호전달 경로가 더 많이 나타났으며 이로 인하여 많이 파괴되었다고 한다. 연구팀의 Hu는 “이들 결과들은 초기 단계 암에서 텔로미어 위기가 유전적 불안전성을 유발시키는 것과 일치하며 재활성화된 텔로머레이즈가 이후 암의 진행을 보호해 줌을 제시하고 있다.”라고 밝혔다.

이후 세대의 텔로머레이즈가 활성화된 마우스들은 4928종의 유전자 증폭과 2297종의 유전자 결실이 있는 것으로 확인되었다. 연구팀은 이들 변화를 사람의 림프종과 비교하였으며 565종의 유전자 증폭과 300종의 유전자 결실이 일치하는 것을 확인했다. 여기에는 여러 암 억제 유전자 및 발암 유전자가 포함되어 있으며, 이는 초기 텔로미어 기능 이상이 1차 암 발달을 구동시킬 뿐만 아니라 침습성과 같은 악성 특징에도 기여함을 가리키고 있다.

연구팀은 텔로머레이즈가 활성화된 후대의 마우스에서 암세포를 취하여 4-OHT나 위약이 투여된 마우스들에게 4회 처리하였다고 한다. 2회 처리까지 양 그룹 사이의 생존은 비슷하였지만 3회 처리부터 대조군의 마우스들은 텔로머레이즈 활성화 그룹보다 향상된 생존을 보였으며, 이는 텔로미어 결실이 유전적으로 불안정한 세포들을 선별하는 세포 방어기구를 허용함을 가리키고 있다. 한편 4회 처리에서 대조군 마우스들의 생존은 텔로머레이즈 활성화 마우스 수준으로 급낙하였다.
또한 암도 텔로머레이즈에 의존하지 않는 저항성을 보였다. 이어진 분석에서 활성화 텔로머레이즈를 갖는 암세포에서 텔로미어의 길이는 4회까지 거의 변하지 않은 것으로 나타났다. 텔로머레이즈가 결실된 세포에서 2회 동안 짧아진 텔로미어는 3회와 4회를 통하여 급격하게 증가하였다. 다른 분자적 증거도 텔로머레이즈 결실 세포에서 ALT의 유발을 제시하고 있다. 연구팀은 ALT 양성 암들은 대조군과 비교하여 891종의 유전자 발현이 증가하고 1346종은 감소하는 다른 유전자 발현을 보이는 것도 관찰했다.

미토콘드리아에서는 산화 스트레스 조절에 관련된 네트워크에서 여러 유전자들이 발견되었다. PGC-1ß는 ALT 양성 암에서 유전자 발현과 복제수가 증가에 관련된 경로에 존재하는 유일한 유전자로서 이들 경로의 주요 조절자 역할을 한다. 연구팀이 ALT 양성 암을 갖는 마우스에서 PGC-1ß을 결실시켰을 때에 아닌 마우스보다 오래 사는 것으로 나타났다. 또한 이들의 암에서 텔로머레이즈는 활성화되었다. 정상 세포에서 에너지를 생성시키는 미토콘드리아는 지방산에서 세포의 주요 에너지원인 ATP를 만들어낸다. 암세포는 일반적으로 에너지를 발생시키는데 당 경로에 의존한다. 그러나 연구팀은 이들의 유전적 근거가 미토콘드리아가 암세포의 지원에서 핵심적인 역할을 함을 가리키고 있다고 밝혔다.

그림설명: 1. 텔로머레이즈 재활성화로 작용 방식, 2. 텔로머레이즈 저해에 의한 림프종 세포의 사멸과 저항성 발생, 3. ALT 양성 암세포에서의 PGC-1ß 활성화

Journal Reference: Jian Hu, Soyoon Sarah Hwang, Marc Liesa, Boyi Gan, Ergun Sahin, Mariela Jaskelioff, Zhihu Ding, Haoqiang Ying, Adam T. Boutin, Hailei Zhang, Shawn Johnson, Elena Ivanova, Maria Kost-Alimova, Alexei Protopopov, Yaoqi Alan Wang, Orian S. Shirihai, Lynda Chin, Ronald A. DePinho. Antitelomerase Therapy Provokes ALT and Mitochondrial Adaptive Mechanisms in Cancer. Cell, 2012; 148 (4): 651 DOI: 10.1016/j.cell.2011.12.028
크리에이티브 커먼즈 라이센스
Creative Commons License

Posted by 네오


미 듀크대 과학자들은 국방첨단연구사업청(Defense Advanced Research Projects Agency, 이하 DARPA)의 연구비 지원을 받아 세포 수준에서 생물학적 시간을 관할하는 생물학적 시계가 수행하는 유전학적, 그리고 분자적 통제를 연구하는 프로젝트를 출범시킨다고 오늘 (3월 2일) 발표했다.

DARPA는 ‘생체시간성’(Biochronicity) 프로그램의 일부로 듀크 대의 이번 프로젝트에 1,450만 여 달러 (한화 약 165억 원)를 지원한다. ‘생체시간성’ 프로그램은 원핵생물 및 진핵생물에 존재하는 유전체, 후성유전체, 단백체, 그리고 전사체에 존재하는 통상적인 시공간적명령, 혹은 “시간 표시”(clock signatures)를 밝히기 위한 연구 프로그램이다. 인간에게도 광범위하게 적용될 수 있는 연구로 기대되고 있다. 향후 4년 간 계속될 듀크 대 연구 프로젝트에서 수학, 체계생물학, 그리고 생물정보학의 비중이 높을 전망이다. DARPA는 연구가 진행되는 동안 각각의 단계에 따라 연구자들이 도달해야할 특정한 목표점들을 여러 가지 제시했으며 그에 따라 매년 이 프로젝트를 평가할 예정이다.

연구자들은 서로 다른 유형의 생물학적 시계를 켜고 끄는 유전자들을 발견하고자 하며, 나아가 각각의 유전자가 여러 생물학적 시계 안에서 어떤 역할을 하는지, 그리고 어떤 시계가 주기에 있는지, 즉, 현재 작동중인지 알아보는데 그 유전자들을 활용할 수 있을지에 대해 탐구하고자 한다. 이러한 지식은 질병, 트라우마, 인간의 전투능력 등에 대한 이해의 증진과 관리 방법의 발견에 도움을 줄 것이며 전염성 질환에 맞서는 도구 개발에도 활용될 수 있다. 대사 시계의 통제는 전장에서 얻게 되는 트라우마 건을 치료하거나, 병사들이 부상을 입은 후 대사 과정을 느리게 하거나, 혹은 장거리 비행 후 전장에 투입되는 병사들이 시차적응을 보다 쉽게 하도록 돕는데 매우 유용한 도구가 될 수 있다.

듀크 대 수학 및 컴퓨터과학 교수인 존 헤이러(John Harer)가 이끄는 이 연구팀은 세포주기, 24시간 주기 (생체) 시계, 효모 대사작용 등 여러 전문분야의 연구팀과 협력할 예정이다. 이들은 프린스턴 대, 캘리포니아 공대(칼텍), 펜실베이니아 대, 몬태나 주립대 및 런던수리과학연구소 등 각기 다른 기관에 포진해 있다. (사진: 존 헤이러 듀크 대 교수)

“어떻게 시기조절 요소들이 핵산 및 여타 생분자들에 암호화되어 있는지에 대한 현재의 이해는 아직 미미하며 발견적 수준에 머물러 있으며 정량적인 예측력이 부재한 상태에 있다”고 DARPA는 현 상황을 진단하고 있다.

물론 이미 다양한 ‘시계 유전자’들이 발견되었지만 DARPA는 이번 연구 프로젝트 지원을 설명하며 이 중 어떤 유전자도 세포 내에서 발현을 시간적으로 조절하는 거대한 체계의 핵심 유전자 내지 조절자가 아니라고 밝혔다. 생분자가 발현되는 정확한 시기를 이해하기 위해서는 분자-시한(molecular-timed)의 경우들, 세포 주기의 진행, 수명, 노화 및 세포의 사망을 예측하는 모델의 개발이 필수적이라고 DARPA는 강조했다.
크리에이티브 커먼즈 라이센스
Creative Commons License

Posted by 네오


멀티테스킹을 조절하는 두뇌

사용자 삽입 이미지
두가지 일을 동시에 수행하기를 시도할때, 두뇌는 각각의 직무에 대해 두뇌 절반씩을 나누어 할당한다는 새로운 연구결과가 4월 16일자 Science 저널에 발표되었다. 하지만 두가지 일을 동시에 수행하면서 정신적으로 많은 요구를 원하는 또 하나의 직무를 추가하는 것은 잊는게 좋을 것이다. 왜냐하면 이번 연구를 통해 두뇌는 세가지 이상의 직무를 수행하는 동시 작업은 효과적으로 수행할 수 없다는 것이 추가적으로 밝혀졌기 때문이다.


직무를 수행함에 있어서 전두엽피질 (prefrontal cortex)의 역할을 중요하다. 두뇌의 앞부분에 해당하는 이 지역은 목적이나 의도를 형성한다. 예를 들어, “나는 저 과자를 원한다” 라고 전두엽피질이 두뇌의 나머지 부분에 말을 하면 당신의 손이 과자가 잡기 위해 과자가 있는 곳으로 움직이고 당신의 마음이 당신이 과자를 가지기를 원하는지 아닌지를 알게 된다. 그렇다면 또 다른 하나의 목표가 추가되어 두 개의 목적이 동시에 작용한다면 어떻게 될까?

이 의문에 대한 해답을 찾기 위해 프랑스 파리의 INSERM의 뇌과학자인 Etienne Koechlin과 Sylvain Charron은 두뇌 활동의 변화를 측정할 수 있는 기능자기공명영상기법 (functional magnetic resonance imaging, fMRI)를 이용하였다. 연구진은 19세부터 32세까지의 남녀 각각 16명의 실험자들이 철자를 맞추는 복잡한 직무 동안에 두뇌의 움직임을 관찰하였다. 컴퓨터 화면에서 보여진 글자들을 무작위를 취해서 두개의 연속적인 단어 (모두 대문자로 이루어져 있거나 모두 소문자로 이루어지게) 를 구성하게 하는 일이었다. 또한 동시에 다른 일을 수행하는 멀티태스킹을 위해 동시에 대문자와 소문자를 함께 이용하여 단어를 매치하게 하는 작업을 수행토록 하였다. 실험에 참여한 사람들이 잘 수행하면 적은 양의 돈을 보상으로 받게 하였다.

연구진이 예상한대로 한번에 하나의 철자를 매치시키는 직무는 실험자 두뇌의 양쪽 부분을 활성화시켰고 일을 수행하기 위해 두뇌의 앞쪽에서 뒤쪽으로 명령을 전달시키는 방법을 따랐다. 하지만 실험자들이 두번째 직무에 참여하자 마자 두뇌는 두개의 직무들을 각각 나누어 담당하는 것이 관찰되었다 (그림 참조). 즉, 왼쪽 두뇌의 전두엽피질이 하나의 일을 담당하고 오른쪽 뇌의 전두엽피질이 또 하나의 일을 담당하는 것이다. 각각의 두뇌는 각기 독립적으로 작용하여 각각의 목표와 금전적인 보상을 위해 일하는 것이었다.

두뇌는 직무을 관리할 수 있는 단지 반구 (hemisphere) 두 개로 구성되어 있기 때문에 세가지 이상의 일을 능률적으로 수행할 수 없을 것이라고 이 연구 결과에 바탕을 두고 연구진은 제안한다. 정말로 연구진이 추가로 16명의 실험 지원자들에게 앞의 두가지 일에 더불어 색의 매치까지 요구하였을 때에는 실험자들은 세가지 일 중에서 하나의 일을 지속적으로 잊곤 하였다. 또한 두가지 일을 수행하는 실험자들 보다 세배나 많은 실수를 범하였다.

“일상생활에서 당신은 요리를 하면서 전화통화를 동시에 할 수 있습니다. 하지만 문제는 동시에 또 하나의 새로운 일을 하기 원할 때 일어납니다. 당신의 전두엽피질의 항상 하나의 일을 포기하곤 합니다.” 라고 Koechlin 박사는 말한다.

미국 노스캐롤리나의 듀크대학교 (Duke University)에 재직중에 뇌과학자인 Scott Huettel은 인간의 멀티태스킹 능력이 두개의 직무로 제한된다는 이번 연구 결과에 확신할 수 없다고 논평하였다. “이번 연구는 세번째 직무를 추가할 수 없는 조건이 존재한다는 것을 보여주나 일의 종류에 따라 두뇌의 다른 부분을 이용할 수 있을 수도 있을 것으로 예상할 수 있습니다.” 라고 그는 제안한다.

예를 들어 사람들은 다른 일을 하면서 동시에 식사를 하는 것을 매우 잘합니다. 왜냐하면 먹는 데 수반되는 모터 능력은 시각적인 자극을 해석하거나 언어를 통제하거나 다른 복잡한 프로세스들을 이용하는 일들과 그리 많이 겹치지 않지 때문이라는 것이다. 그럼에도 불구하고 이번 연구는 새롭고 흥미롭다는 게 Huettel박사의 의견이다. 또한 두뇌의 반구들이 어떻게 구성되어 있는지에 대한 현재의 지식이 얼마나 미미한지를 이번 연구가 반영한다고 할 수 있다.

이 연구는 “Divided Representation of Concurrent Goals in the Human Frontal Lobes” 라는 제목으로 Science 저널 (Science, 328 (5976), 360-363)에 소개되었다.

[그림] A와 B의 두가지 직무를 동시에 수행할때 두뇌의 반쪽은 A를 담당하고 (빨강) 나머지 반은 B를 담당한다 (노랑).
크리에이티브 커먼즈 라이센스
Creative Commons License

Posted by 네오


날아다니는 백신주사로 전환된 모기

사용자 삽입 이미지
일본 연구진들은 모기가 병을 옮기는 대신에 백신을 전달할 수 있게 개발하였다. 유전자 조작으로 모기에서 발현된 항원은 모기가 숙주를 물을때 침을 통해 숙주로 전달되는 개념으로 생쥐 모델을 이용한 실험에서 생쥐 체내에 모기로 부터 유입된 항원에 대한 항체가 형성되는 것을 확인하였다. 그러나 연구진이 인정한 것처럼 모기의 제어나 윤리적인 문제들로 백신을 전달할 수 있는 모기의 실제 적용은 불가능한 것으로 보이지만 상당히 흥미로운 연구라는 게 관련 동료 연구자들의 평이다.

과학자들은 오랫동안 곤충의 DNA를 조작하여 질병에 대항할 수 있는 다양한 방법을 꿈꿔 왔다. 하나의 방법으로는 기생충이나 바이러스의 감염에 저항성을 가진 모기를 만드는 것이다. 이러한 방법은 거의 불가능 하겠지만 어느 정도 자연에 존재하는 질병을 가진 모기들을 대체할 것이다. 또 다른 전략으로 좀 더 실현 가능성이 있는 것은 유전자 조작 모기를 만들어서 풀어주면 자연의 모기들과 교배를 하여 생존 가능한 자손을 더 이상 낳지 못하게 하는 것이다. 따라서 시간이 지남에 따라 모기 집단의 수는 줄어들 것이다.

Insect Molecular Biology 저널에 발표된 연구는 기존의 방법과 전혀 다른 생각에서 출발하였다. 연구에 참여한 과학자들이 “날으는 백신주사 (flying vaccinators)” 라고 명명하였고 유전자조작된 모기 집단을 이용하는 것이다. 일반적으로 모기가 물면 아주 작은 양의 침을 숙주로 주입하여 숙주의 혈액이 응고되는 것을 막는다. 연구진은 모기의 침에 면역반응을 유발하는 항원을 추가하였다.

일본 자치의과대학 (Jichi Medical University)의 분자 유전학자인 Shigeto Yoshida 박사가 이끄는 연구진은 Anopheles stephensi 라는 말라리아 모기에서 침에 있는 유전자들만의 발현을 증진할 수 있는 프로모터 (promotor)를 동정하였다. 이 프로모터에 SP15이라는 리슈만편모충증 (leishmaniasis, 모래파리 (sand fly) 에 의해 전파되는 기생 질병으로 피부의 통증과 기관에 피해를 줌, 아래의 주1 참조) 에 대한 후보 백신을 붙였다. 따라서 유전자 조작된 모기들은 침에서 SP15을 생산해내었고 이 모기에 물린 생쥐들은 SP15에 대한 항체를 생산하였다.

하지만 항체의 발현정도는 매우 높지 않았으며 항체를 가진 생쥐들이 정말로 리슈만편모충증에 대항 할 수 있는지는 아직 실험되지 않았다. 단지 몇몇의 실험 기관만이 이러한 효과를 실험해 볼 수 있게 제한되어 있다고 Yoshida 박사는 말한다. 생쥐들은 유전자조작 모기들에게 평균적으로 1500번 정도 물렸다. 이것은 매우 높은 빈도로 보이지만 연구진은 말라리아가 만연한 곳에서는 사람들도 하룻밤에 100번 이상 모기에 물린다고 언급하였다. 연구진은 또한 말라리아에 대한 후보 백신을 생산해내는 모기들도 만들었다.

SP15를 개발한 미국 국립 전염병 연구소 (National Institute of Allergy and Infectious Diseases)의 Jesus Valenzuela 박사는 이번 연구 아이디어에 찬사를 가하였고 미국 메릴랜드대학 (University of Maryland)의 곤충 분자유전학자인 David O’Brochta 박사는 매우 흥미로운 증명이라고 언급하였다.

그렇다면 왜 이 유용한 모기를 실제로 적용할 수 없을까? 사람마다 모기가 무는 것에는 엄청난 차이가 존재하여 유전자조작 모기에게 물린 사람들에게서도 다양한 수준으로 백신이 발현될 것으로 예상된다. 예를 들어 한 사람은 홍역 주사를 한번 맞은 것에 불과할지 몰라도 다른 사람은 같은 주사를 500번이나 맞은 것과 같을 수도 있다. 따라서 질병을 통제하는 어떠한 기관에서도 이와 같은 모기의 방출을 허락하지 않을 것이다. 또한 이러한 모기의 방출은 백신 투여에 동의하지 않은 사람에게도 무작위로 백신을 투여하는 것이 되므로 윤리적으로도 문제가 될 것이다. 따라서 이 모기를 이용한 방법은 인간에 대한 백신 전달 기작으로는 받아드려질 수 없는 방법이며 이와 같은 사실을 연구진도 인정하였다.

그럼에도 불구하고 날으는 백신주사는 동물들의 질병과 싸우는데는 잠재력을 가질지도 모른다. 동물들에게는 백신주사에 대한 동의를 구할 필요도 없고 백신의 양의 차이는 덜 중요할 것이기 때문이다.

[발표된 원 논문]
lying vaccinator; a transgenic mosquito delivers a Leishmania vaccine via blood feeding
Insect Molecular Biology, D. S. Yamamoto, H. Nagumo, S. Yoshida, Early View, Date: April 2010,

[주 1] 리슈만편모충증: https://health.google.com/health/ref/Leishmaniasis
크리에이티브 커먼즈 라이센스
Creative Commons License

Posted by 네오


미국 시카고대학(University of Chicago) 화학자들이 줄기 세포의 발달에 영향을 주기 위해 기하학적으로 패턴화된 표면을 이용했다.
사용자 삽입 이미지

이 새로운 방법은 줄기세포의 운명을 조절하는 단백질의 역할을 알아내는데 집중하는 대부분의 줄기세포 생물학자들과는 접근방식이 다른 것이다. 이 방법은 미국 국립학술원회보지(Proceedings of the National Academy of Sciences)에 발표되었다.

[사진] 시카고 대학에서 박사후과정중인 Kristopher Kilian

"세포들은 같은 수용성 단백질을 본다. 이들이 지방세포가 될지 뼈가 될지를 결정하는 것은 이들의 모양뿐이다. 이는 전에는 알지 못했던 사실이다. 줄기세포 치료법이 많은 관심을 받는 요즘 줄기세포가 특정한 계통으로 자라도록 하는 조건을 찾기위한 노력이 많이 진행중이다."라고 이번 연구를 이끈 화학과 교수인 Milan Mrksich는 설명했다.

시카고대학연구팀은 세포들을 별모양으로 만드는 것이 세포의 구조적 지지를 가능케 하는 딱딱한 세포골격을 만드는 방법이라는 점을 발견했다. 반면에 세포를 꽃모양으로 만들면 느슨한 세포골격이 만들어진다. "꽃모양에서는 대부분의 세포들이 지방세포가 된다. 반면 별모양은 세포들을 대부분 뼈로 만든다."라고 Milan Mrksich교수팀의 Kris Kilian연구원은 소개했다.

Milan Mrksich교수는 이 방법이 줄기세포들을 치료목적으로 쓸 수 있도록 하기에는 아직 시기상조이지만 이를 가능케 하는 상당히 고무적인 결과들이 나오고 있다고 밝혔다. Milan Mrksich교수팀은 배양액 안의 세포들의 위치, 크기, 모양을 조절하기 위한 목적으로 화학을 이용해 표면을 패턴화하는 방법들을 개발해왔다. 또한 이 패턴화된 세포들을 신약개발시험 및 세포 이동 및 흡착연구에 적용하고 있다.

[발표문헌] Kristopher A. Kilian, Branimir Bugarija, Bruce T. Lahn, and Milan Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.0903269107
크리에이티브 커먼즈 라이센스
Creative Commons License

Posted by 네오


「인간과 유연관계(有緣關係)가 먼 생물체」의 유전자 데이터베이스를 탐색하여 「인간과의 미세한 연관성」(subtle links)을 찾아내는 데이터발굴기법(data-mining technique) 덕분에, 인간의 질병모델을 찾아내는 작업이 한결 수월해질 것 같다. 이 기법은 인간, 마우스, 이스트, 충류(worms), 식물 등을 포함하는 광범위한 종(種)에 대한 기존의 유전자 정보를 통합하여, 관찰가능한 특성을 나타내는 돌연변이 간의 연관성을 찾아낼 수 있다. 따라서 이 기법을 이용하여 非인간종(non-human species)의 유전자로부터 인간의 질병에 기여하는 유전자를 발굴한 다음, 이를 토대로 하여 다양한 생물체를 이용한 질병모델을 만들 수 있다면, 인간의 질병을 연구하는 데 많은 도움이 될 것으로 보인다.

"동일한 유전자의 돌연변이가 종에 따라 극적으로 다른 결과를 초래할 수 있다. 예컨대 RB1 유전자의 돌연변이는 인간의 경우 안암(eye cancer)을 유발하지만, 충류(蟲類)의 경우에는 생식기를 엉뚱한 곳에 발생시킨다. 이 유전자는 여러 종에 광범위하게 보존되어 있지만, 각각 다른 기능을 발휘하도록 진화된 것이다."라고 이번 연구를 주관한 텍사스대학의 에드워드 마콧 박사(Edward Marcotte, 시스템생물학)는 말한다. 이상의 원칙에 입각하여 마콧 박사 연구팀은 인간 질병의 연구에 활용될 수 있는 후보유전자를 확인하는 작업에 착수하였다. 연구진은 인간의 유전자 데이터베이스에서 유방암에 관여하는 유전자를 찾아낸 다음, 충류의 유전자 데이터베이스를 탐색하여 그것이 수컷자손(male progeny)을 생성하는 데 관여한다는 것을 밝혀내었다. 나아가 연구진은 충류의 유전자 네트워크에서 인간의 유방암과 관련이 있는 13개의 유전자를 추가로 발굴하였는데, 그중에서 9개는 이제까지 유방암과 관련이 없는 것으로 알려졌던 것들이다. 이번 연구는 PNAS 3월 22일호에 기고되어, 학계의 많은 관심을 모으고 있다.

그밖에도 연구진은 이번 연구에서 특이한 유전자들을 많이 발견하였다. 예컨대 식물에서 중력을 감지하는 데 관여하는 유전자는 인간의 경우 바르덴부르크증후군(Waardenburg syndrome, 피부와 모발에 비정상적으로 색소가 침착되고, 구순구개열, 청각손실 등이 나타나는 장애)이라는 발달장애와 관련이 있는 것으로 밝혀졌다. 연구진은 유전자 데이터베이스 탐색을 통하여 식물의 `중력유전자 네트워크`에 속하는 3개의 유전자가 인간의 바르덴부르크증후군과 관련이 있다는 것을 발견한 다음, 심층분석을 위하여 개구리의 배아를 대상으로 하여 유전자 발현패턴을 분석한 결과, sec23ip라는 유전자가 신경능선세포(neural-crest cells, 색소세포와 뇌조직의 전구세포)에 발현된 것을 확인하였다. 연구진이 신경능선세포에서 sec23ip의 발현을 감소시킨 결과, 신경능선세포의 이동패턴에 심각한 결함이 발생한 것을 확인할 수 있었다. 이는 SEC23IP가 바르덴부르크증후군의 발병에 관여한다는 것을 시사하는 것이다.

연구진은 또한, 마우스의 혈관증식에 관여하는 유전자가 이스트의 경우에는 `로바스타틴 감수성`(콜레스테롤 강하제인 로바스타틴의 존재 하에서 성장하는 능력)과 관련이 있다는 것을 발견하였다. 연구진은 이스트의 `로바스타틴 감수성`에 관여하는 유전자군을 분석하여, 그중 62개가 혈관신생과 관련이 있다는 사실을 확인하였다. 연구진이 추가로 개구리의 배아를 대상으로 하여 혈관이 발생하는 과정을 분석한 결과, 발생중인 혈관에 발현된 59개의 유전자 중 5개는 이제까지 혈관발생과 관련이 없는 것으로 알려졌던 유전자였다. 연구진이 그중의 한 유전자(sox13)의 발생을 감소시키자, 개구리와 인간세포의 혈관발생에 심각한 결함이 발생한 것으로 확인되었다. 이는 이스트가 인간의 혈관발생의 모델로 사용될 수 있다는 것을 의미한다. "이스트는 피도, 혈관도 보유하지 않지만, 우리에게 혈관의 형성과정을 알려줄 수 있다. 이와 마찬가지로, 식물에게는 머리와 얼굴이 없지만 머리와 얼굴이 정확하게 형성되는 과정을 알려줄 수 있다."고 연구진은 말했다.

이번 연구의 일등공신은 데이터발굴기법(data-mining technique)이라고 할 수 있다. 데이터발굴기법이 없었다면 `유전자`와 `관찰가능한 특성`간의 연관성에 대한 20만 건 이상의 데이터를 통합·분석하는 것이 불가능했을 것이다. "이번 연구는 진화과정에서 모든 유전자와 분자경로의 기능이 완전히 달라졌다는 것을 단적으로 보여준다. 동일한 유전자가 유연관계가 먼 종(種)들 사이에서 그렇게 잘 작동하고 있다는 것은 매우 놀라운 일이다."라고 UC 버클리의 니팜 파텔 박사(Nipam Patel, 발생생물학)는 말했다. "나는 이번 연구를 계기로 하여 과학자들이 모든 유전자에 주석을 다는 작업을 계속하게 되기를 바란다. 현재 기능이 밝혀진 유전자 중 유전자 데이터베이스에 수록된 것은 불과 5% 미만이다."라고 캘리포니아 공대에서 충류의 발생과정을 연구하고 있는 폴 스텐버그 박사(Paul Stenberg)는 말했다.

"이번 연구에서 사용된 접근방법은 다양한 생물체를 이용하여 인간의 복잡한 질병모델을 만들어내는 데 매우 유용할 것으로 보인다. 이는 질병의 발생경로를 알아내고 신약을 개발하는 과정을 단축시킬 것으로 기대된다. 왜냐하면 식물이나 이스트는 인간이나 마우스에 비해 매우 저렴하고 성장속도가 빠르기 때문이다"라고 스텐버그 박사는 덧붙였다. 그러나 이번 연구는 전적으로 통계학에 의존하고 있기 때문에, 연구의 결과가 100% 정확하다고 보장할 수는 없다. "이번 연구에 사용된 접근방법이 인간의 다양한 질병에 적용될지는 좀더 두고 보아야 한다. 하지만, 비록 그것이 모든 인간질병에 적용되지는 않더라도, 일부 질병에라도 적용될 수 있다면 여전히 매우 흥미있는 일이라고 할 수 있다."라고 파텔 박사는 말했다.

Reference: "Systematic discovery of nonobvious human disease models through orthologous phenotypes", PNAS published online before print March 22, 2010, doi:10.1073/pnas.0910200107.
출처 : http://www.nature.com/news/2010/100322/full/news.2010.140.html
크리에이티브 커먼즈 라이센스
Creative Commons License

Posted by 네오

Response
83<